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A Novel Blind Spectral Unmixing Method Based
on Error Analysis of Linear Mixture Model

Chunzhi Li, Faming Fang, Aimin Zhou, and Guixu Zhang

Abstract—It is well known that the linear mixture model (LMM)
is attracting much attention due to its simplicity. However, some
theoretical analysis reveals that the traditional LMM also impedes
the improvement of blind spectral unmixing. For this reason,
we propose a novel blind spectral unmixing method (NBSUM)
in this letter. NBSUM utilizes the conjugate gradient to calcu-
late end-member spectral and abundance, which can not only
overcome some shortcomings of the traditional LMM but also
provide more accurate results. NBSUM is compared with some
state-of-the-art approaches on both synthetic and real hyper-
spectral data sets, and the experimental results demonstrate the
efficacy of the proposed method.

Index Terms—Benign equation, blind spectral unmixing (SU),
error analysis, linear mixture model (LMM), novel blind spectral
unmixing method (NBSUM).

I. INTRODUCTION

S PECTRAL unmixing (SU) aims to decompose mixed pix-
els into a set of constituent spectra (end-members) and

their corresponding proportions (abundances). In SU, the linear
mixture model (LMM) and nonlinear mixture model (NLMM)
have been widely used [1]. In spectra, the virtual end-members
formed by the interactive term can highly correlate with the true
end-members [2], which may lead to a serious collinearity prob-
lem in NLMM. Therefore, this letter focuses on LMM, which
assumes that each mixed pixel is a linear combination of some
end-members. Over the past years, various constraints have
been imposed on LMM to enhance its capability in subpixel
detection and mixed-pixel classification and quantification. All
such extensions attempt to increase and enhance their linear
unmixing ability [3]. Usually, the methods based on LMM can
be classified into the geometrical and statistical approaches
[3]. Comparing to the geometrical approaches, the statistical
approaches are more suitable for highly mixed spectra [4].

The nonnegative matrix factorization (NMF) is a typical
statistical approach for blind source separation (BSS) [5]. Since
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both the spectral end-member and abundance matrices are
unknown, a SU problem becomes a BSS problem or a blind SU
problem, and NMF has been widely used. By decomposing a set
of high-dimensional data into two nonnegative matrices, NMF
can overcome some disadvantages of geometric approaches. In
the case of blind SU, NMF can find basis vectors for the LMM.
The major challenges faced by NMF are as follows: 1) the so-
lution space is usually neither sparse nor uniqueness, and 2) there
usually exists a large amount of local minima [6]. To over-
come these shortcomings, it is natural to introduce additional
auxiliary constraints into the NMF model with the character-
istics of different applications. This idea is followed by some
methods, such as NMF based on minimum volume constraint
(NMF-MVC) [7], L1/2NMF [6], Abundance Separation and
Smoothness Constrained NMF (ASSNMF) [8], and by using
the S-measure constraint (SMC), a gradient-based sparse NMF
(NMF-SMC) [9]. Although these methods can improve SU
performance greatly, they still suffer from collinearity effect
[2], and the estimates of end-member fraction may be affected
erratically in response to minor changes in noise level in the
matrix deconvolution process. A major cause of limitations
might be that, in blind SU, the NMF is based on LMM.

To deal with the problems faced by NMF on blind SU,
this letter proposes a novel blind spectral unmixing method
(NBSUM) by the error analysis of LMM. In NBSUM, the
conjugate gradient (CG) is employed to realize blind SU.

II. ERROR ANALYSIS OF TRADITIONAL LMM

LMM assumes that end-members do not interfere with each
other [10] and can be formulated as

X = WH + ξ (1)

where X = [xT
1 , x

T
2 , . . . , x

T
M ]T ∈ �M×N denotes the collected

mixtures, W ∈ �M×K denotes the end-member spectra matrix,
and H ∈ �K×N is the weighted matrix which denotes the
corresponding abundances. Based on the real background, each
column of H is summed to one. M , K, and N denote the
number of bands in end-member signatures, the number of
end-members, and the number of pixels in the hyperspectral
remote sensing image, respectively. ξ ∈ �M×N is the random
measurement error matrix. In (1), W , H , and X are all required
to be nonnegative.

In blind SU, NMF is employed to find two nonnegative
matrices W and H by using the projected alternating least
squares estimation (ALSE). Hereafter, we assume that the
random measurement errors ξ are brought about alternately.
Consequently, when fixing W to find H , ξ stems from ΔW and
can be expressed as

ξ = ΔWH (2)
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where ΔW denotes the difference between the library end-
member spectra and the true end-member spectra constituting
mixed pixels. Moreover, when fixing H to find W , ξ can be
expressed as

ξ = WΔH (3)

where ΔH is the difference between the real end-member
abundance and the calculated end-member abundance.

In the following, we consider how to find the end-member
abundance matrix H with a fixed end-member matrix W . Let
ξ = ΔWH , and H can be derived from (1) as

HNMF = (WTW )−1WTX. (4)

It has been shown that, if the end-member spectra are linearly
independent, (WTW )−1 always exists [11].

To evaluate the effect of the traditional LMM on the estima-
tion of H , a criterion of mean square error (mse) is used. Define
ΨH [11] as

ΨH = E

[
ζTHζH
K

]
(5)

where ζH = HNMF − Ĥ denotes the error of abundance es-
timation, Ĥ is the real end-member abundance matrix, and
E[·] calculates the expectation value of a random variable. It is
known that the sum of the eigenvalues of a matrix is the mean
of the energy. Therefore, (5) can be further derived as [11]

ΨH =
1

K
E
[
Tr

[
ζTHζH

]]
(6)

where Tr[·] is the trace of a matrix. Let U = (WTW )−1WT

be the pseudoinverse of the matrix W . Substituting (4) into (6),
we can get

ΨH =
1

K
E
[
Tr

[
(UX − Ĥ)T (UX − Ĥ)

]]
. (7)

According to (1) and (2), X can be written as

X = WĤ +ΔWH. (8)

For any given two matrices F and C, there exists Tr(FC) =
Tr(CF ). Utilizing this matrix property and substituting (8) into
(7), we can get

ΨH =
1

K
Tr[ξξTUTU ]. (9)

To achieve an accurate estimation of H , ΨH needs to
be minimized. Since K is a given constant, the term of
Tr[ξξTUTU ] needs be optimized. It should be noted that the
term of Tr[ξξTUTU ] is not only related to ξ (i.e., the random
measurement error matrix of LMM) but also related to U .
However, the traditional LMM only minimizes ξ as in (1).

As the same in the above, we can find the end-member matrix
W with a fixed end-member abundance matrix H . The mse of
end-member spectral matrix W , ΨW , can be derived as

ΨW =
1

K
Tr[ξξTV TV ] (10)

where V is the pseudoinverse of the matrix H . It is obvious
that it required to minimize the term Tr[ξξTV TV ] to get a
more accurate W . Unfortunately, the traditional LMM does not
consider V in practice.

In order to get accurate results, traditional blind SU methods
usually utilize sparse NMF to control overfitting and add a
sparseness regularization term to improve the uniqueness of the
decomposition [4], [12]. In these methods, the error function to
be minimized is usually defined as

D(W,H) =
1

2
‖X −WH‖2F + λ‖H‖q 0 < q ≤ 2 (11)

where λ is a regularization parameter and ‖H‖q is the regular-
ization term.

In traditional blind SU methods, the sparsity constraint can
improve the accuracy of the result. However, the additional
auxiliary constraints may also lead to unstable and local optimal
results. Generally speaking, the L0 regularizer considers the
number of nonzero elements in an abundance matrix and yields
the most sparse result for a given cost function. However,
the solution of the L0 regularizer is an NP-hard optimization
problem that cannot be solved in practice.

III. NBSUM

This section presents the details of the proposed NBSUM for
blind SU. In NBSUM, the ALSE method is used to calculate
the nonnegative matrices W and H iteratively.

First, we fix W to find H . According to the error analysis of
the traditional LMM, the accuracy of H is affected by ξ and U .
Therefore, we can obtain H from the following model:

X = WH + UT ξ. (12)

Second, we fix H to find W . As the same in (12), we can
deduce the following model by taking consideration of (10):

XT = HTWT + V ξT . (13)

As discussed in the previous section, U and V are pseudoin-
verse matrices for W and H , respectively, i.e., UW = I and
HV = I . Models (12) and (13) can thus be reformulated as
follows:

WTX =WTWH + ξ (14)
HXT =HHTWT + ξT . (15)

The above models can be further formulated in a uniform as

B = AΦ+ ϑ (16)

where, in the case of model (14), B = WTX , A = WTW ,
Φ = H , and ϑ = ξ, and B = HXT , A = HHT , Φ = WT , and
ϑ = ξT in the case of model (15). In comparison with (1),
its purpose is to minimize ξ, while the cost function of (16)
minimizes the items of UT ξ and V ξT alternately. Meanwhile,
in (16), the nonnegative constraint and the abundance sum-to-
one constraint of matrix Φ must be fulfilled.

It is clear that both WTW and HHT are symmetric positive
semidefinite matrices, which means that the model (16) is ill-
posed and there does not exist a unique and stable solution.
To deal with this problem, an additional auxiliary constraint
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on Φ is usually introduced as a regularization term, which can
incorporate some prior knowledge and reflect the characteristics
of the problem to tackle. However, those methods still suffer
from the following drawbacks.

1) The sparse constraint of the cost function is inappropriate,
i.e., (11) is equal to minimize ‖ξ‖2F + λ‖H‖q . However,
according to the error analysis of the traditional LMM,
we should minimize (9) and (10), respectively.

2) The solution of the sparse equation is nonuniqueness, and
the solutions vary with the initial values.

3) The LMM often leads to ill-posed equations, for which
the global optima are hard to obtain.

In this letter, we add a damping term to solve this problem.
Thus, (16) can be modified to the following form:

B = (A+�I)Φ + ϑ (17)

where � is a given small positive constant and I ∈ �K×K is
an identity matrix. �I is called as a damping term, by which
A+�I becomes a symmetric positive definite (SPD) matrix.
Furthermore, the disadvantages of the regularization term are
overcome. As a result, (17) can promote an optimal solution.
For simplicity, we call the model in (17) as an NBSUM.

In following, we use the CG method to solve the model (17).

A. CG Method

The CG method was originally developed in the early 1950s
by Hestenes and Stiefel [13] for solving a linear system of
equations, such as B = (A+�I)Φ, where A+�I is an
SPD matrix. Since the CG method is constructed for sparse
linear systems in a saddle point form, it has the potential to
overcome a common problem with (projected) gradient descent
algorithms [14]. In this letter, we use the CG algorithm for the
optimization of the coefficient matrix Φ. An iterative method is
adopted in this section.

Let Φ0 be a given initial approximate solution of Φ in (17),
and let the initial residual be ϑ0 = B − (A+�I)Φ0. Based
on the initial approximation, a sequence of approximations
Φ1,Φ2, . . . and the corresponding residual matrices (ϑi) =
B − (A+�I)Φi, i = 1, 2, . . ., are generated. The CG residual
vectors vec(ϑi) are mutually orthogonal, i.e.,

(vec(ϑi))
T vec(ϑj) = 0

where i �= j and vec(·) is an operator for stacking the column
vectors of a matrix into a single column vector. Φi could be
updated by the CG method under the Krylov subspace [13]
iteratively as

Φi = Φi−1 + αiPi (18)

where Pi is the search direction and αi denotes the step size.
Let P0 = ϑ0, and Pi is updated as

Pi = ϑi + βiPi−1 (19)

where

βi =
‖ϑi‖F
‖ϑi−1‖F

(20)

αi =
‖ϑi‖2F

(vec(Pi))
T vec(�Pi +APi)

. (21)

Fig. 1. AVG-SAD values versus (a) number of end-members and (b) number
of pixels for the three algorithms.

B. Improved NMF Based on NBSUM

NMF is utilized to calculated matrices W and H . Here, NMF
is based on NBSUM, which is tackled by the iteration of the
method CG. We denote the improved NMF for blind SU as
NMF-NBSUM. Generally, we set constant = 10−6. Its main
procedure can be described as follows.

Step 1) Initialize W0 ∈ RM×K
+ , H0 ∈ RK×N

+ , and � =
10−8, and set t = 1. Rescale each column of H to
be a unit norm.

Step 2) Fix Wt−1, and optimize Ht by (14) with the CG
method.

Step 3) Fix Ht, and optimize Wt by (15) with the CG
method.

Step 4) Repeat Steps 2) and 3) until the maximum number
of iterations has been reached or ϑ < constant.

IV. EXPERIMENTS

In this section, we assess the performance of NMF-NBSUM
on both synthetic and real data. Four state-of-the-art methods
are used for comparison study: vertex component analysis
(VCA) [15], NMF-SMC [9], simplex identification via vari-
able splitting and augmented Lagrangian (SISAL) [16], and
L1/2NMF [6]. Among them, NMF-SMC and L1/2NMF
are based on NMF, while VCA and SISAL are geometric
approaches. It should be noted that VCA needs the presence
of pure pixels; moreover, VCA and SISAL infer abundances
indirectly. In synthetic experiment, the abundances follow a
Dirichlet distribution [17], and we just compare NMF-NBSUM
with two sparse NMF methods. We use the spectral angel
distance (SAD) criteria to evaluate the unmixing results. For
the kth end-member, the SAD is defined as

SADk = cos−1 ŵT
k wk

‖ŵk‖2‖wk‖2

where wk and ŵk are the resultant and reference end-member
signatures, respectively.

A. Experimental Results on Synthetic Data

In order to conduct a comprehensive comparative analysis,
a synthetic image is designed and simulated based on the
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Fig. 2. Corresponding estimations of abundance map obtained by (left) NMF-NBSUM and (right) VCA, respectively. (a) Abundance map of chalcedony.
(b) Abundance map of buddingtonite. (c) Abundance map of muscovite. (d) Abundance map of montmorillonite. (e) Abundance map of kaolinite. (f) Abundance
map of sphene.

reflectance spectra of the U.S. Geological Survey (USGS)
ground-truth mineral spectra.1 The end-member signature ma-
trix WM×K is selected from the USGS digital spectral library,
and the abundance matrix HK×N is generated according to a
Dirichlet distribution, which is the same as in [17]. To simulate
the possible errors and sensor noises, some Gaussian noises are
added to the mixtures with a zero mean [17] and a signal-to-
noise ratio SNR = 10 log(E(χχT )/E(εεT )), where χ denotes
the real signals and ε denotes the corresponding noise. Each run
consists of 21 spectra made from K pure materials. The average
of SAD is calculated as

AVG-SAD =
1

K

K∑
j=1

SADj .

First, we fix the number of pixels and noise by setting N =
1296 and SNR = 30 dB and set the number of end-members
as r = 3, 4, 5, 6, 7, and 8. The AVG-SAD values versus the
number of end-members are plotted in Fig. 1(a). From the
figure, we can see that only NMF-NBSUM can obtain the most
accurate end-member signatures. When the number of end-
members r = 3, 4, and 5, the differences from the algorithms
are huge.

Second, we fix the number of end-members and noise by
setting R = 3 and SNR = 30 dB and set the number of pixels
as n = 36, 72, 144, 288, 576, 864, and 1296. Fig. 1(b) shows
the AVG-SAD values versus the number of pixels. It is clear
that NMF-NBSUM achieves the best performance among the
three algorithms.

From the experimental results, we can conclude that NMF-
NBSUM overcomes the shortcomings of LMM and increases
the probability of finding an optimal solution.

1The library is available at http://speclab.cr.usgs.gov/spectral.lib04/
lib04-AVIRIS.html

B. Experimental Results on Real Data

In this section, the algorithms are applied to the widely used
Cuprite data which were captured by AVIRIS in June 1997 in
the state of Nevada.2 There are 224 bands in the data, covering
the wavelength range of 0.37–2.48 m. The spectral resolution
is 10 nm. The imaging area is located in the desert about
200 km northwest of Las Vegas, NV, USA, where it is covered
by various exposed minerals with a highway (U.S.95) crossing
through but not by vegetation. An approximated distribution
of the minerals has been illustrated in [18]. The minerals are
normally highly mixed. In the experiment, a block of size
250 × 191 is taken from the original data. Before unmixing, the
1st–2nd, 104th–113th, 148th–167th, and 221st–224th bands are
removed as noisy or water-absorption bands, leaving 188 bands
left. The initial data are formatted into MAT by the software
of MultiSpec.3 The number of end-members is assigned as 12,
using the virtual-dimension method [19].

Fig. 2 shows some resulting abundances of NMF-NBSUM
and VCA. As the end-member number is a little large, we
mainly compare the abundance maps of seven representative
end-members. In the figures, the pure black denotes that the
percentage of a certain sort of object in this pixel is 0, while the
pure white denotes 1. From the figures, we can see that NMF-
NBSUM recovers the abundances more efficiently than VCA
(according to available data4 and an existing analysis of the
data set [20]), particularly for end-members, e.g., chalcedony,
buddingtonite, muscovite, etc.

We also employ the spectra of corresponding minerals picked
up from the USGS library as the reference end-member signa-
tures. In order to evaluate the performances quantitatively, we

2available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3available at http://cobweb.ecn.purdue.edu/biehl/MultiSpec/
4available at http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um.map.gif
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TABLE I
SAD METRIC VALUES BETWEEN LIBRARY SPECTRUM AND EXTRACTED

SPECTRUM OBTAINED BY THE COMPARING METHODS

directly use the results of VCA as the starting points for the
NMF-NBSUM learning. The indices SADj (calculated using
the estimated spectrum from the USGS digital spectral library)
of the five algorithms NMF-NBSUM, L1/2NMF, NMF-SMC,
VCA, and SISAL are shown in Table I. The mean of the SADj

over ten runs is calculated for these methods. The CPU time
is the average time spent per run for unmixing. Based on these
results, it can be seen that NMF-NBSUM identifies the most
numbers of minerals and gives the best comprehensive result.
Moreover, the CPU time of NMF-NBSUM is less than the
other two NMF-based methods (L1/2NMF and NMF-SMC),
although it is not as efficient as the geometric method VCA.

V. CONCLUSION

In this letter, we first analyzed the general LMM model and
then proposed a novel blind spectral unmixing method, named
NBSUM. The NMF method is employed to deal with the equa-
tion, termed as NMF-NBSUM, in which the CG method is used
to solve the basic equation. NMF-NBSUM is able to converge
more efficiently and the reasons might be the following.

1) The proposed method transforms the LMM into NBSUM
which overcomes the limitations of LMM by consider-
ation of both the random measurement error ξ and the
pseudoinverse of matrices W and H .

2) The traditional LMM usually leads to ill-posedness, while
in our method, a benign equation is constructed to get
optimal solution.

3) The CG method is based on the Krylov subspace, and
some matrix–matrix operations are avoided.

The proposed approach was applied and compared with some
state-of-the-art methods on both the synthetic and the real data.
The experimental results show that NMF-NBSUM is promising
for blind SU.
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