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Abstract—Spectral unmixing aims at estimating the propor-
tions (abundances) of pure spectrums (endmembers) in each
mixed pixel of hyperspectral data. Recently, semi-supervised
approach which takes the spectral library as prior knowledge
has been attracting much attention in unmixing. In this paper,
we propose a new semi-supervised unmixing model termed
framelet based sparse unmixing (FSU) which promotes the
abundance sparsity in framelet domain, and discriminates the
approximation and detail components of hyperspectral data after
framelet decomposition. Due to the advantages of the framelet
representations, e.g., images have good sparse approximations in
framelet domain, and most of the additive noises are included
in the detail coefficients, the FSU model has a better antinoise
capability, and accordingly leads to more desirable unmixing
performance. The existence and uniqueness of the minimizer of
the FSU model is then discussed, and the split Bregman algorithm
as well as its convergence property are presented to obtain the
minimal solution. Experimental results on both simulated data
and real data demonstrate that the FSU model generally performs
better than the compared methods.

Index Terms—Hyperspectral image, sparse unmixing, framelet,
abundance estimation, split Bregman.

I. INTRODUCTION

Hyperspectral remote sensing is a type of earth observation
technology which can acquire hyperspectral images. The hy-
perspectral image is a data cube in high dimension that can
reflect both spatial and spectral information of ground objects
and is characterized by high spectral resolution and relative-
ly low spatial resolution. Hyperspectral remote sensing has
attracted increasing attention for its widespread applications,
such as mineral exploration [1], [2], terrain classification,
environmental monitoring, military surveillance [3], [4], etc.

Since the spatial resolution of the hyperspectral image is
generally low, a single pixel may contain several different
material substances (named endmembers), each possessing a
different hyperspectral signature [5], [6]. In this case, the
measured spectrum of each pixel is a mixture of several
endmember spectra, weighted by their fractions, called abun-
dances [7], [8]. The existence of mixed pixels decreases
the precise of many applications, thus becoming one of
the most important obstacles of the development of remote
sensing applications. To improve the accuracy of hyperspectral
image analysis, the decomposition of the mixed pixels is
required. This decomposition process is termed as (spectral)
unmixing [9]–[11]. More precisely, spectral unmixing aims at
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extracting several pure endmember spectra from an observed
mixed pixel and figuring out their corresponding abundance
fractions [12].

A. Related work

In the last few decades, a large number of unmixing
techniques have been developed. Considering whether the
secondary reflections and multiple scattering among different
endmembers are negligible or not, the mixture models can
be divided into two categories: linear mixture model and
nonlinear mixture model. In the linear model, it is assumed
that the hyperspectral data is a linear combination of some end-
members, while more complicated assumptions are adopted in
nonlinear model. Since the linear mixture model is simple and
effective in most real scenarios [13], we focus on the linear
mixture model in this paper.

On the other hand, unmixing approaches can be roughly
classified into supervised, unsupervised and semi-supervised
methods according to our priori knowledge of the end-
members [14]: a) Supervised unmixing aims to estimate
the abundances with known endmembers. The most classi-
cal and widely used abundance estimation algorithm is the
fully constrained least squares (FCLS) method [15]. b) In
unsupervised unmixing, both endmember signatures and their
abundances are directly estimated from the observed data. We
can first identify the endmember signatures use endmember
extraction algorithms [16]–[20], then quantify the abundances
of each estimated endmember using supervised unmixing
methods. Moreover, simultaneously estimation can be realized
using unsupervised FCLS [7], independent component analysis
methods [21], [22], and non-negative matrix factorization
based methods [23]–[27], etc. c) Semi-supervised unmixing
takes the spectral library as a prior knowledge, then selects
a proper subset of signatures from the library which can
model each mixed pixel optimally [12]. Most of these methods
are developed based on sparse regression [28]–[31], greedy
algorithms [32], and Bayesian methods [33].

Generally, supervised unmixing methods could achieve a
good estimation of abundances. However, the requirement
for a priori knowledge of the endmember signatures have
limited the application of these methods. As opposed to
supervised unmixing, unsupervised unmixing methods directly
unmix the given data without prior knowledge. Whereas, it
also has some limitations: one is that endmember extraction
algorithms always rely on some restrict assumptions, such
as the pixel purity assumption, which are difficult to be
guaranteed in practical applications [16]–[18]; the other is
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that the abundances estimation may have a large cumulative
error when the estimated endmembers are not precise [34].
On the contrary, semi-supervised unmixing methods avoid the
above limitations by taking advantage of a spectral library.
When spectral libraries are used, the abundances estimation
procedure no longer depends on some strict assumptions nor
on the capacity of the endmember extraction algorithms [12].
Due to those advantages, we focus on the semi-supervised
unmixing in this paper.

A simple way to formulate the semi-supervised unmixing
is to transform FCLS model into a semi-supervised fashion
[12] by replacing the prior endmembers with a spectral library.
However, since FCLS is formulated as a least squares problem
constrained by the abundance sum-to-one and nonnegative
constraints, it comes with the drawback of sensitive to noise.
Actually, noise is somewhat inevitable in real conditions,
which will interfere with the abundance estimation and bring
adverse effects to unmixing results in terms of accuracy [12].
To address this issue, a possible solution is that we can adopt
a denoising method, such as maximum noise fraction (MNF)
transformation [35] or BM3D [36], in the preprocessing stage
of an unmixing task. This idea can help FCLS unmixing to
some extent. However, since MNF denoising has difficulty
in achieving good balance between noise removal and detail
preservation, it possibly results in a loss of useful information.
While BM3D denoising relies on prior knowledge of accurate
noise variance, whereas a perfect noise variance estimation
is difficult in practice [37], and the inaccuracy of noise
variance estimation could lead to an unsatisfactory denoise
performance. Thus the improvement effect of the pre-denoised
unmixing is limited. In practice, as stated in some literatures
[38], unmixing is also helpful for denoising while preserving
data’s information. That is, unmixing and denoising can be
promoted mutually. A good unmixing method should possess
the property to resist noise. Thus, a reasonable choice may be
a simultaneous procedure of unmixing and denosing.

In the past few years, many semi-supervised sparse unmix-
ing methods have been developed in the framework of sparse
representation. Taking advantage of sparse optimization, s-
parse unmixing models possess the capability of anti-noise.
The main reason is three fold [39]. First, signal could be rep-
resented by few atoms while noise could not. Second, we can
reject noise to some extent by selecting endmembers from the
noiseless spectral library. Third, sparse regression optimization
stops when the representation error reaches a pre-defined small
value in order not to reconstruct noise [40]. Some prominent
sparse unmixing methods are briefly introduced as follows. In
2010, Bioucas et al. proposed a sparse unmixing via variable
splitting and augmented Lagrangian (SUnSAL) algorithm to
solve an optimization problem regularized by `1-norm based
sparsity term [28]. In 2012, SUnSAL-TV model includeing
the total variation (TV) regularization to the classical sparse
regression formulation [29] was proposed. It further improves
the unmixing accuracy by assuming neighboring pixels have
similar abundance for each endmember. In 2013, DSUnAD-
M was developed to solve the sparse unmixing problem
efficiently by applying a new alternating direction method
(ADM) [41]. In 2014, collaborative SUnSAL (CLSUnSAL)

was raised to solve the sparse unmixing problem using joint
sparse regression [30]. Joint sparsity constraint assumes that
the neighboring pixels share the similar endmembers which is
less strict than TV regularization [8]. In summary, all the above
sparse unmixing methods endeavor to exploit more efficient
regularization terms to help unmixing.

B. Contribution

To further improve the unmixing performance on noisy
hyperspectral data, we propose a new semi-supervised un-
mixing model termed framelet based sparse unmixing (FSU)
in this paper. The construction of FSU model utilizes the
sparse property of framelet representation. Different from the
standard least-squares data fidelity term, a more effective
one taking advantage of framelet transformation is exploited.
Due to the fact that framelet representation enables us to
discriminate the approximation and the detail components, the
proposed method could better suppress noise during unmixing
process by flexibly balancing the trade-off between these
two parts. Besides, we develop an effective algorithm based
on split Bregman algorithm to solve FSU model. Both the
existence and uniqueness of the solution for our model and
the convergence property of the proposed algorithm will be
proved.

The rest of the paper is organized as follows. In Section II,
we introduce the linear spectral unmixing model and semi-
supervised unmixing formulation. A brief introduction of
framelet and the proposed unmixing model are addressed
in Section III. The numerical scheme with its convergence
property are presented in Section IV. Various experiments
on synthesized and real hyperspectral data are then reported
in Section V to illustrate the superior performance of our
approach. Finally, some concluding remarks are given in
Section VI.

II. THE REPRESENTATION OF LINEAR MIXTURE MODEL

Given an observed hyperspectral image Ȳ ∈ R3 with size
of b × r × c, where b is the number of spectral bands, r and
c are the rows and columns of the image in one band, we
reshape Ȳ to Y ∈ R2 with size of b × p, where p = r × c
is the number of pixels, and each column of Y represents the
spectrum of a pixel.

Then the linear mixture model can be written as

Y = ÃH + ε (1)

where Ã = [ã1, · · · , ãj , · · · , ãe] ∈ R2 (size: b× e) is the
endmember signatures matrix, each column ãj is b dimen-
sional vector that denotes the spectral signature of the j-th
endmember in the given image, e is the number of endmem-
bers. H = [h1, · · · ,hi, · · · ,he]T ∈ R2 (size: e× p) is the
abundance fractions matrix, each row hi is p dimensional
vector that denotes the abundance of the i-th endmember in
each pixel. ε denotes the additive noise.

In practice, it has been found that there are some properties
in H , such as, 1) H is nonnegative, i.e., H ≥ 0; 2) the sum
of each column of H is one [7], [42], i.e.,

∑e
i=1Hi,j = 1
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for each pixel j = 1, · · · , p. Here Hi,j denotes the (i, j)-th
element of H .

Semi-supervised unmixing reformulate (1) by replacing Ã
with a spectral library A ∈ R2 (size: b×m) as follows

Y = AH + ε. (2)

Here m is the number of spectral signatures in A, and H =
[h1, · · · ,hi, · · · ,hm]T ∈ R2 (size: m× p) is an expansion
of its previous version. Generally, m is much larger than e.
In (2), all pixels of Y are supposed to share a small subset
of endmembers, i.e., only a small number of columns in A
contribute to combining the observed data, which means H
has a small number of nonzero components. Therefore, semi-
supervised unmixing aims at obtaining a sparse solution for
H .

III. PROPOSED UNMIXING MODEL

In this section, before presenting the proposed unmixing
model, we first give a brief introduction to the framelet system.
For simplicity, we only show the framelets in the univariate
setting, and the framelets in the bivariate setting can be
obtained by tensor product of the univariate one. Those who
are interested in the framelets can refer to [43]–[45] for more
details.

A. Framelets and image representation

Let χ ⊂ L2(R) be a countable function subset, if

f =
∑
g∈χ
〈f, g〉g, ∀f ∈ L2(R),

or equivalently represented as

‖f‖2L2(R) =
∑
g∈χ
|〈f, g〉|2, ∀f ∈ L2(R),

where 〈·, ·〉 is the inner product in L2(R), and ‖ · ‖L2(R) =
〈·, ·〉1/2 is the norm in L2(R). Then χ is called a tight frame
of L2(R).

The tight frame is a generation of the orthogonal basis
which relaxes the requirements of the orthogonality and linear
independence [46]. It brings redundancy that leads to robust
signal representations and helps unmixing of noisy data.

Given a finite set Φ = {φ1, · · · , φr} ⊂ L2(R), the
collection of dilations and shifts of Φ is called a wavelet
system χ(Φ), here

χ(Φ) = {2k/2φj(2kx− l) : 1 ≤ j ≤ r; k, l ∈ Z}.

When χ(Φ) forms a tight frame, it is termed as a wavelet tight
frame, and φj is a (tight) framelet.

To construct wavelet tight frames, one starts from a com-
pactly supported refinable function (a scaling function) ψ ∈
L2(R) with a refinement mask (low-pass filter) ξ0 ∈ L2(Z)
satisfying a refinement equation

ψ(x) =
∑
l∈Z

ξ0(l)ψ(2x− l).

Then, for the given compactly supported refinable function,
a tight framelet system can be constructed by finding an

appropriate set of framelets Φ = {φ1, · · · , φr} ⊂ L2(R). Let
{ξ1, · · · , ξr} ⊂ L2(Z) be a set of framelet masks (high-pass
filters), then the framelets are defined as

φj =
∑
l∈Z

ξj(l)ψ(2x− l), j = 1, · · · , r.

Thus, the construction of framelets Φ amounts to design the
filters ξ0, ξ1, · · · , ξr.

The unitary extension principle (UEP) in [47] gives the
condition for χ(Φ) to form as a tight frame system, i.e., the
filters ξ0, ξ1, · · · , ξr satisfy

ζξ0(ω)ζξ0(ω + γπ)+
r∑
j=1

ζξj (ω)ζξj (ω + γπ) = δ(γ), γ = 0, 1,

for almost all ω ∈ R. Here ζξ(ω) =
∑
l

ξ(l)eilω and δ(γ) is a

delta function.
Based on the UEP, a piecewise linear B-spline can be

used as the refinable function ψ. The refinement mask is
ξ0 = [14 ,

1
2 ,

1
4 ], and the two corresponding high-pass filters

are

ξ1 = [−1

4
,

1

2
,−1

4
], ξ2 = [

√
2

4
, 0,−

√
2

4
].

In the numerical scheme of image processing, the framelet
transform (decomposition operator) can be represented by a
matrix W . The processes of generating such matrices have
been detailed in many literatures such as [44]. We omit them
here for readability.

One of the most important property of W is that it can be
written as

W =

[
W0

W1

]
, (3)

where W0 denotes the low-pass filter operator, and W1 con-
sists of remaining band-pass and high-pass filter operators.
Based on the UEP, the following equation holds

WTW =WT
0 W0 +WT

1 W1 = I, (4)

whereWT and I are the inverse framelet transform and equiv-
alent transform, respectively. Using W , the framelet transfor-
mation (decomposition) process can be easily described. Given
an hyperspatial image Y , the framelet coefficient vector X is
given by

X =WY =

[
W0Y
W1Y

]
, (5)

where W0Y and W1Y are the approximation and detail
coefficients, respectively. Besides, the framelet reconstruction
process can be expressed as

Y =WTX =
[
WT

0 X,WT
1 X

]
,

More importantly, the tight frame W satisfies Y = WTWY .
That is, WTW = I. Generally, WWT 6= I, unless in the
orthogonal case.

Finally, it should be noted that we work in the bivariate case
for our unmixing work. The corresponding transform matrix
can be readily obtained by the Kronecker product of the matrix
corresponding to the univariate one (see [48] for details). In the
following, we still use the notation W to denote the bivariate
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framelet transform. We further note that W is used only for
notational convenience. In the real numerical computation, we
use fast algorithms for WY and WTX , which only need to
convolve with images using a couple of filters (see [48]).

Fig. 1 gives an intuitive example of framlelet decomposition.
In detail, Fig. 1(a) is a subimage of the well-known AVIRIS
Cuprite data set1; Fig. 1(b) shows the framelet coefficients
after one level decomposition, in which the approximation
coefficients are shown in the top left corner, and the detail
coefficients are shown in the other parts; the histogram of
Fig. 1(a) is shown in Fig. 1(c); and the histogram of the
approximation coefficient value is shown in Fig. 1(d). Obvi-
ously, the histogram of approximation coefficient value is very
similar to that of the original image. Fig. 1(e) and Fig. 1(f)
are the histogram and the accumulative histogram of Fig. 1(b),
respectively. We can observe from the two sub-figures that
most of the framelet coefficient values are very small (almost
88% coefficient values are lower than 100). That is, most of
the framelet coefficient values are equal to or very close to 0.
Thus the hyperspectral images have sparse representations or
approximations in the framelet domain.

B. Framelet based sparse unmixing model

We now propose a novel unmixing model by emphasizing
both framelet-based sparsity (regularization term) and robust
reconstruction (fidelity term). The principal effect of sparsity
term is to preserve the sparse property of framelet coefficient
value of abundance, and the reconstruction term, which will
be split into two components in framelet domain, is used to
reduce the interference of the additive noise.

In the following, we will detail the regularization and
fidelity terms, then build the total unmixing model.

Firstly, we describe the two regularization terms based on
two aforementioned properties, i.e., nonnegativity and sparsity,
of the abundance matrix H .
• Nonnegativity: The nonnegative property of H can be

represented by the following approach:

min
H
‖ι(H)‖1,1 :=

∑
i,j

|ι(Hi,j)|,

where
ι(Hi,j) =

{
0, Hi,j ≥ 0
+∞, otherwise .

• Sparsity: As explained in Section II, in semi-supervised
unmixing, the fractional abundances denoted by H is
a sparse matrix, which leads to the minimization of
‖H‖1,1. In addition, as illustrated in the previous sub-
section, an image usually have sparse approximations in
the framelet domain [45]. The abundance maps can be
viewed as the images that demonstrate the distributions
and proportions of correspond endmembers. Thus they
also have sparse property in framelet domian, suggest-
ing that ‖WH‖1,1 need to be minimized. Obviously,
‖WH‖1,1 = ‖W0H‖1,1+‖W1H‖1,1 (see (5)). SinceW0

is the low-pass filter operator (see (3)), W0H is roughly

1Available online at http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 1. An example of framelet decomposition. (a) the original image (RGB
composite of the AVIRIS Cuprite subimage using bands 183, 193, and 203);
(b) the result of one level framelet decomposition; (c) the histogram of the
original image; (d) the histogram of the approximation coefficient value; (e)
the histogram of the framelet coefficient value; (f) cumulative probability
distribution corresponding to (e).

approximates to H (see Fig.1(c) and (d) for example).
That is, ‖WH‖1,1 ≈ ‖H‖1,1 + ‖W1H‖1,1, i.e., the first
sparse property (minH ‖H‖1,1) is approximately included
in the second one (minH ‖WH‖1,1). Accordingly, the
above two sparse properties can be simply illustrated by
the second sparse term, i.e,

min
H
‖WH‖1,1. (6)

On the other hand, due to the nature of the framelet transfor-
m, when we decompose the image Y into framelet domain (as
shown in (5) and Fig. 1), the approximation coefficient value
W0Y includes the majority of the image energy, while the
detail coefficient value W1Y contains the detail information
as well as most of the additive noise. In other words, the
information and the noise of Y are mainly presented in
W0Y and W1Y , respectively. To verify those analysis, we
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Fig. 2. The histograms of the framelet coefficient value of Cuprite data. (a)-(c) the histograms of approximate coefficient value when SNR=40, 30, and 20
dB, respectively; (d) the cumulative probability distributions corresponding to (a)-(c); (e)-(g) the histograms of detail coefficient value when SNR=40, 30, and
20 dB, respectively; (h) the cumulative probability distributions corresponding to (e)-(g).

respectively add the Gaussian noise to the Cuprite subimage
(see Fig. 1(a)) with SNR=40 dB, 30 dB, and 20 dB2, and
decompose them into framelet coefficients. The histograms of
the framelet coefficient value are shown in Fig. 2. It is clear,
at different noise levels, that the histograms of approximation
coefficient value are similar, while the histograms of detail
coefficient value are significantly distinct with each other. That
is, the noise has little influence on approximation parts. This
observation motivates us to treat the approximation and detail
parts separately, and formulate our fidelity term as:

1

2

∥∥∥∥[ W0(AH − Y )√
αW1(AH − Y )

]∥∥∥∥2
F

.

It is equivalent to:

1

2
‖W0AH −W0Y ‖2F +

α

2
‖W1AH −W1Y ‖2F , (7)

where ‖ · ‖F denotes the Frobenius norm, and α > 0 is
a balance parameter. The first term of (7) requires that the
approximation coefficient value of the observed Y should be
close to that of the reconstructed AH . As for the second
term, when the noise level of Y is low (i.e., SNR is high),
the detail coefficient value of Y and AH can be sufficiently
close. However, in the high noise situation, the requirement
of minimizing this term is less strict as we tend to obtain a
noiseless reconstructed image. Thus, α can be flexibly adjust
to images with different noise levels, and a small α is preferred
for the high noise situation.

Taking all the above terms into account, we can formulate

2Here SNR stands for “signal-to-noise ratio” which is inversely related to
the noise level. It is defined as: SNR(dB) = 10 log10

‖AH‖22
‖ε‖22

.

our unmixing problem as the following optimization function:

min
H

E(H) =
1

2
‖W0AH −W0Y ‖2F +

α

2
‖W1AH −W1Y ‖2F

+ β‖WH‖1,1 + ‖ι(H)‖1,1,
(8)

where β > 0 is a parameter.
Besides, we can readily prove the existence and uniqueness

of the solution for (8).

Theorem 1. Let Y,A,H ∈ R2, and α, β > 0, then the
minimization problem (8) admits a unique solution in R2.

Proof: Since W,W0 and W1 are linear operators, we
can readily confirm the convexities of 1

2‖W0AH −W0Y ‖2F
and α

2 ‖W1AH − W1Y ‖2F . Besides, β‖WH‖1,1 is strictly
convex. To prove this theorem, we now just need to verify the
convexity of ‖ι(H)‖1,1. This convexity is also rather obvious
due to the fact that the `1 norm ‖ · ‖1,1 and the function ι(·)
are convex. Thus, (8) is strictly convex in R2, then it admits
a unique solution.

IV. NUMERICAL ALGORITHM

In this section, the numerical procedure of the proposed
model will be implemented. It is known that the minimization
problem (8) can be solved by many efficient methods, such as
augmented Lagrangian method [49], split Bregman algorith-
m [50], alternating direction method of multipliers (ADMM)
[51], and Chambolle’s algorithm [52]. In this paper, we adopt
the multiple-splitting split Bregman algorithm.

As introduced in [50], the split Bregman algorithm, which
has been proven to be equivalent to ADMM when dealing with
the optimization problem with linear constraints [51], extends
the utility of the Bregman and linear Bregman iterations. It
is a promising method which can solve our non-differentiable
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convex optimization problem effectively, and can reduce the
time and space overhead significantly. The wide applications
in many image processing issues, such as image denoising and
deblurring [45], have also demonstrated the superiority of the
split Bregman algorithm.

The key idea of the split Bregman algorithm is that it will
separate the `1 and `2 components. Thus, we first rewrite (8)
as the following equivalent constrained problem:

min
H,V1,V2,V3

1

2
‖W0V1 −W0Y ‖2F +

α

2
‖W1V1 −W1Y ‖2F

+ β‖V2‖1,1 + ‖ι(V3)‖1,1,

subject to

 V1 = AH
V2 =WH
V3 = H

.

(9)

Let
V ≡ (V1, V2, V3),

E(V ) ≡
1

2
‖W0V1−W0Y ‖2F+

α

2
‖W1V1−W1Y ‖2F+β‖V2‖1,1+‖ι(V3)‖1,1,

and

G =

AW
I

 , B =

I 0 0
0 I 0
0 0 I

 ,
where I is the identity matrix with proper size. Then, (9) can
be rewritten in a compact form:

min
H,V

E(V ), subject to BV = GH. (10)

The regular split Bregman algorithm of (10) is as follows: (H(t+1), V (t+1)) = argmin
H,V

E(V ) +
µ

2
‖GH −BV −D(t)‖2F ,(11)

D(t+1) = D(t) +BV (t+1) −GH(t+1), (12)

where µ > 0 is a preset constant and D ≡ (D1, D2, D3)
denotes the lagrangian multiplier associated with the constraint
in (10).

To obtain H(t+1) and V (t+1), we need to solve the sub-
problem (11) with respect to H and V alternately until the
convergence condition reached. However, as shown in [50],
the ultimate optimal efficiency can also be guaranteed when
iterating H and V with only one iteration. That is, we can
split (11) and solve H and V separately. Thus, H(t+1) can be
directly obtained from the following minimization problem:

H(t+1) = argmin
H

µ

2
‖GH −BV (t) −D(t)‖2F

= argmin
H

µ

2
‖AH − V (t)

1 −D(t)
1 ‖

2
F

+
µ

2
‖WH − V (t)

2 −D(t)
2 ‖

2
F

+
µ

2
‖H − V (t)

3 −D(t)
3 ‖

2
F .

(13)

Since (13) is differentiable, the optimality condition of H(t+1)

is readily obtained by calculating its first variation, which
yields:

H(t+1) =(ATA+ 2I)−1[AT (V
(t)
1 +D

(t)
1 )

+WT (V
(t)
2 +D

(t)
2 ) + (V

(t)
3 +D

(t)
3 )].

(14)

Meanwhile, to solve V (t+1) from (11), we need to compute
V1, V2, and V3, respectively. Firstly, the optimization problem

for V1 is as follows:

V
(t+1)
1 = arg min

V1

1

2
‖W0V1 −W0Y ‖2F

+
α

2
‖W1V1 −W1Y ‖2F +

µ

2
‖AH(t+1) − V1 −D(t)

1 ‖2F .

Its first variation is

(K + µ)V1 = KY + µ
(
AH(t+1) −D(t)

1

)
(15)

where K is an operator which is defined as

K =WT
0 W0 + αWT

1 W1.

We have the following property for K:

Proposition 1. Assume ξ0 is the corresponding low-pass
filter of W0, F is the fast Fourier transform (FFT), and
F(·)T is the complex conjugate of F(·), then, F(K) =
(1− α)F(ξ0)TF(ξ0) + α.

Proof: Thanks to (4), we deduce that

K =WT
0 W0 + αWT

1 W1 = (1− α)WT
0 W0 + αI.

Then we have

F(K) = (1−α)F
(
WT

0 W0

)
+α = (1−α)F(W0)TF(W0)+α.

In numerical scheme, F(W0) is essentially the F(ξ0).
Therefore,

F(K) = (1− α)F(ξ0)TF(ξ0) + α.

Using FFT, we can obtain the closed form solution of V1
from (15) directly,

V
(t+1)
1 = F−1

F(K)�F(Y ) + µF
(
AH(t+1) −D(t)

1

)
F(K) + µ

 ,

where � is dot product operator, and F−1 denotes the inverse
FFT.

Secondly, to compute V2, we need to solve the following
optimization problem:

V
(t+1)
2 = argmin

V2

β‖V2‖1,1 +
µ

2
‖WH(t+1) − V2 −D(t)

2 ‖
2
F . (16)

That is, V2 can be readily obtained by the well-known soft
thresholding [53]:

V
(t+1)
2 = max{|WH(t+1) −D(t)

2 | −
β

µ
, 0} WH(t+1) −D(t)

2

|WH(t+1) −D(t)
2 |

.

(17)

Finally, the optimization problem of V3 is

V
(t+1)
3 = argmin

V3

‖ι(V3)‖1,1 +
µ

2
‖H(t+1) − V3 −D(t)

3 ‖
2
F . (18)

Then V3 is given by

V
(t+1)
3 = max(H(t+1) −D(t)

3 , 0). (19)

Overall, taking all above analyses into account, we can
summarize the complete numerical procedure for the proposed
method. The detailed descriptions are shown in Algorithm 1.
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Algorithm 1: the overall procedure for the proposed model
Input: spectral library A, observed data Y .
Initialize:

set t = 0, H(0) = (ATA)−1ATY , V (0)
1 = AH(0),

V
(0)
2 =WH(0), V (0)

3 = H(0), D(0)
1 = D

(0)
2 = D

(0)
3 = 0; fix

µ > 0, α > 0 and β > 0.
Repeat:

H(t+1) = (ATA+ 2I)−1[AT (V
(t)
1 +D

(t)
1 )

+WT (V
(t)
2 +D

(t)
2 ) + (V

(t)
3 +D

(t)
3 )],

V
(t+1)
1 = F−1

(
F(K)�F(Y )+µF

(
AH(t+1)−D(t)

1

)
F(K)+µ

)
,

V
(t+1)
2 = max{|WH(t+1) −D(t)

2 | −
β
µ
, 0} WH

(t+1)−D(t)
2

|WH(t+1)−D(t)
2 |

,

V
(t+1)
3 = max(H(t+1) −D(t)

3 , 0),
D

(t+1)
1 = D

(t)
1 + V

(t+1)
1 −AH(t+1),

D
(t+1)
2 = D

(t)
2 + V

(t+1)
2 −WH(t+1),

D
(t+1)
3 = D

(t)
3 + V

(t+1)
3 −H(t+1),

update iteration: t = t+ 1,
Until the stopping criterion is satisfied.
Output: abundances H .

The convergence of Algorithm 1 can be guaranteed by the
following theorem:

Theorem 2. Suppose the unique solution of (8) is H∗. Assume
that α, β, µ > 0. Then, the following property for Algorithm 1
holds:

lim
t→∞

E(H(t)) = E(H∗).

Furthermore,
lim
t→∞

H(t) = H∗.

Proof: As stated in the Theorem 1, (8) has a unique
solution. Then, applying Theorem 3.2 in [54], the Theorem 2
is proved.

In addition, we use the relative error as our stopping
criterion. Generally, the relative error ε(H(t)) is defined as

ε(H(t)) =
‖H(t) −H(t+1)‖F

‖H(t)‖F
.

Given a preset positive small parameter %, Algorithm 1 can be
considered as reaching a steady state when ε(H(t)) ≤ % (we
set % = 10−4 in the following experiments).

Finally, we give some discussions for the computational
complexity of Algorithm 1. The computation of framelet trans-
form W is essentially the convolution, thus the complexity of
WY is O(bp log p) when uses FFT. Besides, the (ATA+2I)−1

can be computed outside the loop since A is known. Then the
complexities of computing all variables are shown in Table I.

From Table I, it is obvious that the most time-consuming
steps are the calculations of H , V1, and V2. Thus, the overall
complexity is O(m2p) + O(bp log p) + O(bmp). In practice,
log p is generally much smaller than m. Therefore, the com-
putational complexity of Algorithm 1 is O((m+ b)mp).

V. EXPERIMENTAL RESULTS

In this section, we will illustrate the performance of our
proposed FSU method on both simulated and real data. The

unmixing results are compared with five state-of-the-art ap-
proaches, i.e. BM3D+FCLS, MNF+FCLS, CLSUnSAL [30],
DSUnADM [41], and SUnSAL-TV [29]. Here, BM3D+FCLS
and MNF+FCLS denote two-stage methods combined denois-
ing algorithm and unmixing method, i.e., the hyperspectral
image will preproccess by BM3D or MNF to obtain a denoised
data [35], [36], then the denoised data will be unmixed
by the semi-supervised FCLS method [28]. Specifically, the
noise variance estimated by function ’evar’3 is used as one
of the input parameters of BM3D MATLAB software4, and
MNF denoising is processed using ENVI software. All the
algorithms are implemented using MATLAB R2013a on a
laptop PC equipped with Intel Core i7 CPU (2.70GHz) and
12 GB RAM memory, and it takes averagely 0.15 seconds to
process a pixel for FSU.

A. Experiments with simulated data

In this subsection, two simulated hyperspectral data are used
to evaluate the performance of our algorithm.
• The first data cube contains 170 × 170 pixels and 224

bands per pixel. It is generated according to formula (2)
and using 4 endmembers which are randomly selected
from a spectral library A1 ∈ R224×240. Here, A1 is a
randomly selected subset from the Chapter 1 of United
Stated Geological Survey (USGS) digital spectral library
(splib06a)5 A ∈ R224×498, and it contains 240 materials
with 224 spectrum bands ranging from 0.4 to 2.5 µm.
The true abundances of the 4 endmembers are presented
in Fig. 3. As shown in this figure, the abundances
are designed in the shape of pie, and each pie slice
has different fractional value. Besides, the background
pixels are the uniform mixture of 4 endmembers. After
obtaining the data cube, the data is respectively affected
by the Gaussian white noise for three different levels, i.e.,
SNR=20 dB, 30 dB, and 40 dB.
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Fig. 3. True fractional abundance maps of selected four endmembers in the
first simulated data cube.

• The second simulated data cube has 100×100 pixels and
is composed of 9 randomly selected endmembers from
a spectral library A2 ∈ R120×100. A2 is picked from
a library which contains 262 spectral signatures from
the NASA JSC Spacecraft Materials Spectral Database.
The spectral signatures of this database can be generally
found in real satellites, and has been used in many
literatures [41]. The true fractional abundances of the 9

3Available online at http://www.biomecardio.com/matlab/evar.html
4Available online at http://www.cs.tut.fi/ foi/GCF-BM3D/
5Available online at http://speclab.cr.usgs.gov/spectral.lib06
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TABLE I
THE COMPUTATIONAL COMPLEXITIES OF ALL VARIABLES IN ALGORITHM 1

H V1 V2 V3 D1 D2 D3

O(m2p+mbp) O(bp log p+ bmp) O(bp log p) O(mp) O(bp) O(mp) O(mp)

endmembers (which has been used in [29], [41], [55])
are shown in Fig. 4. After generating the data cube, it
is contaminated by Gaussian white noise using the same
SNR values as the first data.
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Fig. 4. True fractional abundance maps of selected nine endmembers in the
second simulated data cube.

The unmixing performance of simulated data can be quan-
titatively evaluated by two metrics: signal to reconstruction
error (SRE) and root mean square error (RMSE) [29], [30].
The two metrics are defined as:

SRE ≡ E[‖Htrue‖2F ]

E[‖Htrue −H‖2F ]
,

and
RMSE =

1√
e× p

E[‖Htrue −H‖2F ],

where Htrue denotes the true fractional abundances of
endmembers and H is the estimated fractional abundances
of endmembers obtained by Algorithm 1. Generally, SRE
is measured in dB: SRE(dB) ≡ 10 log10(SRE). Obviously,
the higher SRE and lower RMSE value represent the better
unmixing performance.

We now test our FSU model and the other five state-of-
the-art approaches using the aforementioned two simulated
data. All the parameters used in our experiments are selected
from a candidate set: 0, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1,
0.3, 0.5, and 1. This parameters set has been used in [29],
and has included the optimal parameters of all our compared

algorithms as reported in their respective paper. Detailedly,
the parameters of the compared algorithms are tuned to their
optimal performances. As for FSU, we set the parameter pair
(α, β) to (0.01, 0.05), (0.1, 0.01), and (1, 0.005) for 20 dB,
30 dB, and 40 dB noise levels, respectively. Notice that we
increase α and decrease β when the data’s SNR increases.
This is reasonable since the noise is mainly contained in the
high frequency term, and the duty of the regularization term
is essentially to keep the sparse property (which can also
suppress noise).

Figs. 5 and 7 show the estimated abundance maps of the
six methods on the first and second simulated data sets, re-
spectively. Since the abundance maps of different endmembers
present similar estimated results, we only illustrate the 4-th
endmember of the first data cube and the 1-st endmember
of the second data cube as the representatives. In these two
figures, the columns from left to right list the abundance
maps estimated by BM3D+FCLS, MNF+FCLS, CLSUnSAL,
DSUnADM, SUnSAL-TV, and FSU sequentially, and the rows
from top to bottom present the results with SNR=40 dB, 30
dB, and 20 dB, respectively. It can be observed from the
two figures that, for high SNR values (i.e., low noise levels),
there are few differences among these six methods visually.
However, the outperformance of FSU becomes more obvious
when the SNR value decreases.

To see the differences of all the estimated abundances more
clearly, taking the results of SNR=20 dB as examples, we
present a visualization of the differences between ground truth
and estimated abundances in two certain areas from Fig. 5 and
Fig. 7, respectively. The close-ups of their difference images
are shown in Fig. 6 and Fig. 8, darker pixel means smaller
difference. It can be observed from Fig. 6 that most pixels
in the difference images of FSU (Fig. 6(f)) are similar to
BM3D+FCLS (Fig. 6(a)) and darker than others (Fig. 6(b)-
(e)). Moreover, significant superiority of FSU can be seen
from Fig. 8, where the difference images of FSU (Fig. 8(f))
are obviously darker than all others (Fig. 8(a)-(e)). That is,
the abundance maps estimated by FSU are much closer to the
ground truth than others in general.

The above observations can be quantitatively confirmed by
the Tables II and III which record the SRE(dB) and RMSE
values of the unmixing results of the two data sets. It can be
seen that sparse unmixing methods are generally better than
pre-denoised unmixing methods, and our FSU model obtains
the highest SRE(dB) values and lowest RMSE values in most
cases compared with the other five methods. It is worth noting
that the performances of BM3D+FCLS and MNF+FCLS are
significantly different with the two simulated data in the case
of SNR=20 dB. Taking a closer look at Tables II and III, for
the first simulated data, the SRE value of BM3D+FCLS is
about 0.5 dB higher than FSU, and MNF+FCLS is more than
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Fig. 5. The abundance maps estimated by BM3D+FCLS, MNF+FCLS, CLSUnSAL, DSUnADM, SUnSAL-TV, and FSU for the first simulated data cube
(4-th endmember).

(a) (b) (c) (d) (e) (f)

Fig. 6. The difference images of the regions in red boxes from Fig. 5. (a)-(f) are the difference images of BM3D+FCLS, MNF+FCLS, CLSUnSAL,
DSUnADM, SUnSAL-TV, and FSU, respectively. We show quadrupled absolute values for better visual effect.

TABLE II
SRE(dB) AND RMSE VALUES OF DIFFERENT UNMIXING METHODS TO THE FIRST SIMULATED DATA CUBE ON DIFFERENT NOISE LEVELS

SNR BM3D+FCLS MNF+FCLS CLSUnSAL DSUnADM SUnSAL-TV FSU

40 dB SRE 16.8935 15.5332 17.0848 21.3077 20.1629 22.1251
RMSE 0.0066 0.0077 0.0064 0.0039 0.0045 0.0036

30 dB SRE 15.3105 15.1620 9.1537 16.2862 16.0588 18.0010
RMSE 0.0079 0.0080 0.0160 0.0070 0.0072 0.0058

20 dB SRE 13.3792 11.8006 4.2865 9.2161 9.1457 12.8818
RMSE 0.0098 0.0118 0.0280 0.0159 0.0160 0.0104

TABLE III
SRE(dB) AND RMSE VALUES OF DIFFERENT UNMIXING METHODS TO THE SECOND SIMULATED DATA CUBE ON DIFFERENT NOISE LEVELS

SNR BM3D+FCLS MNF+FCLS CLSUnSAL DSUnADM SUnSAL-TV FSU

40 dB SRE 14.2389 15.5288 14.6597 18.1897 18.2274 19.4870
RMSE 0.0141 0.0121 0.0134 0.0089 0.0089 0.0077

30 dB SRE 8.6307 8.9188 8.1536 12.9399 12.9881 14.6790
RMSE 0.0268 0.0260 0.0283 0.0163 0.0162 0.0134

20 dB SRE 5.5624 1.9547 4.1745 7.2897 7.3858 9.9667
RMSE 0.0382 0.0579 0.0448 0.0313 0.0310 0.0230
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Fig. 7. The abundance maps estimated by BM3D+FCLS, MNF+FCLS, CLSUnSAL, DSUnADM, SUnSAL-TV, and FSU for the second simulated data cube
(1-st endmember).

(a) (b) (c) (d) (e) (f)

Fig. 8. The difference images of the regions in red boxes from Fig. 7. (a)-(f) are the difference images of BM3D+FCLS, MNF+FCLS, CLSUnSAL,
DSUnADM, SUnSAL-TV, and FSU, respectively. We show doubled absolute values for better visual effect.

1 dB lower than FSU. However, for the second simulated data,
the SRE value of BM3D+FCLS is about 4.4 dB lower than
FSU, and MNF+FCLS is more than 8 dB lower than FSU.
That is, the performances of BM3D+FCLS and MNF+FCLS
are comparable with FSU on the first simulated data, whereas
severely worse than FSU on the second simulated data. This
phenomenon indicates that pre-denoised methods may be
sensitive to the structural information presented in data, while
FSU is more robust to different data.

Overall, it can be concluded that the improvements of our
FSU model are significant both visually and quantitatively.
For the two simulated data sets, our estimated abundance maps
come closest to the ground truth in most cases, and the average
increase of SRE values is 1.3 dB compared with the second
best results. The encouraging results indicate that framelet
transformation is beneficial to sparse unmixing.

B. Experiments with real data

In this part, the validity of our FSU model will be tested on
the real hyperspectral data. Since the true abundance of each
endmember in real data is unknown, we use the reconstruction
error (RE) of the hyperspectral image and the sparsity of the
abundances as two quantitative indexes [32]. Specifically, the
RE reflects the difference between the original hyperspectral
image and the one reconstructed by the actual endmembers and
their estimated abundances, i.e., RE =

√
1
b×p × ||Y −AH||

2
F .

It is may not a good measure for evaluating the unmixing
performance, because it depends on the sparsity level, and
favors the flexible and complex methods with very high rep-
resentational capability. However, it still can roughly evaluates
the abundances estimation for the actual endmembers when no
ground truth is available [56]. On the other hand, the sparsity is
evaluted by calculating the average proportion of zero entries
in the abundance maps. The same as in [30] and [32], we
regard the abundances smaller than 0.001 as negligible values
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Fig. 9. The distribution maps produced by Tricorder software and the
abundance maps estimated by BM3D+FCLS, MNF+FCLS, CLSUnSAL,
DSUnADM, SUnSAL-TV, and FSU for the subset of the AVIRIS Cuprite
scene at SNR=40 dB noise level.

and count them as zeros. Generally speaking, an unmixing
algorithm that can obtain low reconstruction error as well as
high sparsity of abundances is preferred.

The well-known AVIRIS Cuprite data set is used in our
real data experiment. The portion used here is a subset of
the Cuprite with the size of 204 × 151 pixels. Each pixel of
the scene has 224 wavelength bands ranging from 0.4 to 2.5
µm. Fig. 1(a) shows a pseudo-colored composite of this data.
We remove some low-SNR bands and water-vapor absorption
bands (i.e., bands 1-2, 105-115, 150-170, and 223-224), leav-
ing 188 bands for processing [12], [29]. Since the Cuprite
data has very high signal to noise ratio after this preprocess,
we test the proposed algorithm and all the competitors in the
situation of SNR=40 dB noise level. Many previous works
on this hyperspectral data have stated that there are about 14
kinds of mineral in this scene [18], [42]. Since the USGS
digital spectral library (splib06a) A (have been mentioned in
Section V-A) contains those 14 material signatures, we use
the A with the corresponding low-SNR bands and water-vapor
absorption bands removed as our spectral library.

Fig. 9 illustrates a qualitative comparison on the abundance
maps for the three prominent minerals: Alunite, Buddingtonite,
and Chalcedony produced by BM3D+FCLS, MNF+FCLS,
CLSUnSAL, DSUnADM, SUnSAL-TV, and FSU. The param-
eters of the compared algorithms are tuned to their best perfor-
mance, and the parameters α and β in our model are set to 0.01
and 0.001, respectively. The first row of Fig. 9 is the classifica-
tion maps generated by USGS Tetracorder software. This map
is a good indicator for qualitative assessment of the abundance
maps produced by different unmixing methods [12]. It can be
observed that all the estimated minerals roughly agree with the
information provided by the USGS Tetracorder classification
maps. Moreover, our proposed results visually have less noise
than other considered methods. Specifically, compared with
the others, the abundances estimated by FSU are generally
comparable or higher for the respective minerals. This observa-
tion is particularly obvious for the abundances corresponding
to the Chalcedony.

The quantitative evaluation results that shown in Table IV
also confirm the better performance of the proposed method.
It can be seen that FSU obtains both the lowest reconstruction
error and the most sparse solution, which indicate that our
method can use the actual endmembers to explain the data
effectively. Therefore, we can concluded that FSU is effective
for unmixing real hyperspectral data.

VI. CONCLUSION

We have developed a new model called framelet based
sparse unmixing (FSU) for hyperspectral unmixing by taking
advantages of the framelet representations on the hyperspec-
tral data and its abundances. The proposed model takes the
nonnegative and sparse properties of the abundances as the
regularization terms, and formulates the data fidelity term by
considering the approximation and detail coefficient values of
the original hyperspectral data in framelet domain separately.
The existence and uniqueness of the solution for FSU model
is then discussed. The split Bregman algorithm as well as
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TABLE IV
THE RECONSTRUCTION ERRORS (RE) AND THE SPARSITY OF ABUNDANCES ON REAL DATA EXPERIMENT

Algorithms BM3D+FCLS MNF+FCLS CLSUnSAL DSUnADM SUnSAL-TV FSU

RE 0.0802 0.0243 0.0338 0.0088 0.0080 0.0078

Sparsity 0.6745 0.6641 0.6499 0.4293 0.6356 0.6988

its convergence property are presented to obtain the optimal
solution efficiently. Extensive experiments are conducted on
both simulated and real data, and the unmixing results of FSU
model are compared with pre-denoised unmixing methods
as well as state-of-the-art sparse unmixing methods. Both
qualitative comparison and quantitative analysis prove that our
model generally achieves more accurate unmixing results than
others.

For simplicity, in the current model, we leave out the
structural information of data itself. Since the data-guided
structural information will certainly help the unmixing task,
our further work will focus on the detailed analysis of the data-
guided sparse unmixing. Besides, in most cases, there are only
few materials exist in a certain scene. Therefore, the use of the
complete spectral library is uneconomical. Another relevant
topic deserving further study will be the effective spectral
library pruning based on given hyperspectral data. Finally, as
our method is a general framework, it can be extended in many
possible ways, such as the application of curvelet and others.
We also leave those as further works.
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